On the Influence of Fractal Dimension on Radiation Efficiency and Quality Factor of Self-Resonant Prefractal Wire Monopoles

J.M. González-Arbesú* and J. Romeu
Columbus, Ohio (USA)
June 21-28, 2003
Introduction (i)

- Fractal geometries demand attention in Antennas
 - Self-similarity properties
 - Fractionary Dimension
 - Multiband Antennas
 - Size-Reduced Antennas

- The measure of dimension of fractal curves does not correspond with their topological dimension
 - B. Mandelbrot
 - \(D > D_T \)

- A finite area/volume can enclose a fractal curve with infinite length.
Introduction (ii)

- In Antennas this ability could be used to pack wires in small spaces...

- First attempts using fractal curves as Antennas were
 - Minkowski loops
 - Koch monopoles

- Both designs showed an **expected** reduction of the resonant frequency as the fractal iteration of the monopole was increased.
As the number of iterations increased, the Q was observed to approach the fundamental limit:

$$Q = \frac{1}{ka} + \frac{1}{(ka)^3}$$

a: radius of the smallest sphere that surrounds the antenna;
k: wave number at the operating frequency.

R.C. Hansen: "To obtain performance closer to the minimum Q curve the spherical volume must be used more effectively; a dipole is essentially one dimensional".

The Koch curve is exploiting more efficiently its surrounding volume.

It was suggested that fractal curves, with fractal dimension $D > 1$ (linear dipole), could become more efficient small antennas.
This Work (i)

- Assessment of the relation (if any) among fractal dimension on the Q factor and the η of electrically small self-resonant prefractal wire monopoles. Comparison with Euclidean structures.
- Electrically small antenna: enclosed into a radiansphere ($a=\lambda/2\pi$) \(k_0a<1 \)
- Self-resonant monopoles: no need for external compensation of the reactive part of the impedance.
- The analysis is carried out through simulations and measurements using planar monopoles (easy fabrication procedures and baluns not needed).
This Work (ii)

- Fractals analyzed in the range: $1 < D \leq 2$
 - Koch monopoles: $D=1.26$
 - Sierpinski Arrowhead monopole: $D=1.58$
 - Hilbert monopole: $D=2.00$
 - Peano monopole: $D=2.00$

- Technological limitations: use of prefractals.

- Monopoles generated from an IFS algorithm.

\[
A_n = W[A_{n-1}]
\]
\[
W[A] = w_1[A] \cup w_2[A] \cup ... \cup w_N[A]
\]
This Work (iii)

- Performance comparison with Euclidean one-dimensional structures:
 - $\lambda/4$ monopole
 - *Intuitively* generated monopoles that fill k_0a: Meander line
 Loaded monopoles
This Work (iv)

Koch monopoles

Sierpinski Arrowhead monopoles

Peano monopoles

Hilbert monopoles

Meander line Loaded Monopoles
Simulations (i)

- Monopoles resonant at ~800 MHz.
- Copper wire, radius: 0.2 mm.
- Method of Moments software: NEC.
 - $0.2 \text{ GHz} \leq f \leq 1.2 \text{ GHz}$
 - $0.001 \leq \Delta/\lambda \leq 0.01$ \quad \text{2.5} \leq \Delta/b$
 - Extended Thin Wire Kernel

- Computation of
 - Radiation efficiency
 \[\eta = \frac{R_r}{R_r + R_\Omega} \]
 - Quality factor
 \[Q = \frac{\omega}{2R_r} \left(\frac{dX_{in}}{d\omega} + \frac{X_{in}}{\omega} \right) \]
Simulations (ii)

lossless Q
Measurements (i)

- Fabricated structures using standard PCB techniques.
- FR4 substrate, 0.25 mm thick, 35 µm etching, 0.35 mm strips width.
- 80 cm x 80 cm ground plane.
- SMA connector.
- Input impedance measurements using a VNA.
- Measurements inside an anechoic chamber.
Measurements (ii)

- Radiation efficiency and quality factor are measured with the Wheeler cap method.

@ at resonance f_0:

\[
Z_{\text{in}} = R_r + R_\Omega + jX_{\text{in}}
\]

@ RLC model:

\[
\eta = \frac{R_r}{R_r + R_\Omega} = \frac{\text{Re}\{Z_{\text{in}}\} - \text{Re}\{Z_{\text{cap}}\}}{\text{Re}\{Z_{\text{in}}\}}
\]

\[
Q = \frac{\omega}{2R_r} \left[\frac{dX_{\text{in}}}{d\omega} + \frac{X_{\text{in}}}{\omega} \right]
\]
Measurements (iii)

- Cylindrical cap (height: 12.5 cm; diameter: 6 cm)

Modes inside a cylindrical cap excited by a \(\frac{\lambda}{4} \) monopole resonant at 694 MHz and skewed 10°.
Measurements (iv)

- Impedances are measured using
 - the electrical delay of the VNA to set the reference plane of the monopoles;
 - or by a rotation on the Smith chart to adjust the model of the antenna to an RLC circuit (McKinzie III method).
Measurements (iv)

Expected differences between measurements and simulations:

- wires/strips (~same electrical section)
- dielectric substrate freq. shift/additional losses
- real conductivity of copper
- soldering losses additional losses
- no connector/connector additional losses
- finite ground plane
- contact between cap and ground plane
- ...
- NEC limitations when segments are close together
Measurements

Prefractal monopoles

Koch monopoles

Peano monopoles

Sierpinski Arrowhead monopoles

Hilbert monopoles
Measurements (vi)

Euclidean monopoles

\(\lambda/4\) monopoles
Meander Line loaded Monopoles
Measurements (vii)

lossless Q
Conclusion

- First iterations of fractals of high D seem interesting structures (small k_0a, low Q, high η) but...

- Other non-fractal geometries (ML monopoles filling the radianlength volume) achieve better performances with more degrees of freedom in their design.
On the Influence of Fractal Dimension on Radiation Efficiency and Quality Factor of Self-Resonant Prefractal Wire Monopoles

J.M. González-Arbesú* and J. Romeu

Columbus, Ohio (USA)

June 21-28, 2003
Quality factor comparison: SIMs vs MEASs

lossless Q

simulations

measurements
Rad. efficiency comparison: SIMs vs MEASs

simulations

measurements
SIMd and MEASd Values

<table>
<thead>
<tr>
<th>Antenna</th>
<th>D</th>
<th>k_{0a} Sim’d</th>
<th>Q Sim’d</th>
<th>γ Sim’d</th>
<th>k_{0a} Meas’d</th>
<th>Q Meas’d</th>
<th>γ Meas’d</th>
<th>Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda/4$</td>
<td>1</td>
<td>1.49</td>
<td>7.07</td>
<td>99.16</td>
<td>1.36</td>
<td>7.65</td>
<td>92.71</td>
<td>$\lambda/4$</td>
</tr>
<tr>
<td>MLM-1</td>
<td>1</td>
<td>1.16</td>
<td>8.22</td>
<td>99.01</td>
<td>1.08</td>
<td>7.36</td>
<td>93.05</td>
<td>MLM-1</td>
</tr>
<tr>
<td>MLM-2</td>
<td>1</td>
<td>0.83</td>
<td>13.37</td>
<td>98.14</td>
<td>0.79</td>
<td>14.47</td>
<td>87.68</td>
<td>MLM-2</td>
</tr>
<tr>
<td>MLM-3</td>
<td>1</td>
<td>0.64</td>
<td>22.80</td>
<td>96.23</td>
<td>0.61</td>
<td>26.43</td>
<td>78.37</td>
<td>MLM-3</td>
</tr>
<tr>
<td>MLM-4</td>
<td>1</td>
<td>0.52</td>
<td>37.54</td>
<td>92.87</td>
<td>0.51</td>
<td>43.37</td>
<td>68.61</td>
<td>MLM-4</td>
</tr>
<tr>
<td>MLM-8</td>
<td>1</td>
<td>0.35</td>
<td>103.27</td>
<td>75.44</td>
<td>0.37</td>
<td>107.49</td>
<td>43.37</td>
<td>MLM-8</td>
</tr>
<tr>
<td>K-1</td>
<td>1.26</td>
<td>1.24</td>
<td>10.33</td>
<td>98.67</td>
<td>1.09</td>
<td>12.65</td>
<td>88.99</td>
<td>K-1</td>
</tr>
<tr>
<td>K-2</td>
<td>1.26</td>
<td>1.09</td>
<td>13.00</td>
<td>98.05</td>
<td>0.97</td>
<td>16.21</td>
<td>86.50</td>
<td>K-2</td>
</tr>
<tr>
<td>K-3</td>
<td>1.26</td>
<td>1.01</td>
<td>14.98</td>
<td>97.31</td>
<td>0.90</td>
<td>18.50</td>
<td>82.98</td>
<td>K-3</td>
</tr>
<tr>
<td>K-4</td>
<td>1.26</td>
<td>0.99</td>
<td>15.08</td>
<td>96.39</td>
<td>0.89</td>
<td>18.59</td>
<td>82.48</td>
<td>K-4</td>
</tr>
<tr>
<td>SA-1</td>
<td>1.58</td>
<td>1.08</td>
<td>11.74</td>
<td>98.46</td>
<td>1.00</td>
<td>12.79</td>
<td>89.78</td>
<td>SA-1</td>
</tr>
<tr>
<td>SA-2</td>
<td>1.58</td>
<td>0.78</td>
<td>25.26</td>
<td>96.56</td>
<td>0.75</td>
<td>24.97</td>
<td>81.36</td>
<td>SA-2</td>
</tr>
<tr>
<td>SA-3</td>
<td>1.58</td>
<td>0.63</td>
<td>38.62</td>
<td>93.69</td>
<td>0.62</td>
<td>39.39</td>
<td>72.46</td>
<td>SA-3</td>
</tr>
<tr>
<td>SA-4</td>
<td>1.58</td>
<td>0.53</td>
<td>54.96</td>
<td>89.27</td>
<td>0.52</td>
<td>59.30</td>
<td>63.29</td>
<td>SA-4</td>
</tr>
<tr>
<td>SA-5</td>
<td>1.58</td>
<td>0.49</td>
<td>66.41</td>
<td>83.26</td>
<td>0.49</td>
<td>65.09</td>
<td>56.59</td>
<td>SA-5</td>
</tr>
<tr>
<td>P-1</td>
<td>2</td>
<td>0.72</td>
<td>34.65</td>
<td>94.76</td>
<td>0.70</td>
<td>33.33</td>
<td>75.64</td>
<td>P-1</td>
</tr>
<tr>
<td>P-2</td>
<td>2</td>
<td>0.45</td>
<td>99.47</td>
<td>76.78</td>
<td>0.45</td>
<td>108.25</td>
<td>42.32</td>
<td>P-2</td>
</tr>
<tr>
<td>H-1</td>
<td>2</td>
<td>0.90</td>
<td>24.44</td>
<td>91.79</td>
<td>0.81</td>
<td>22.81</td>
<td>85.50</td>
<td>H-1</td>
</tr>
<tr>
<td>H-2</td>
<td>2</td>
<td>0.57</td>
<td>53.01</td>
<td>90.94</td>
<td>0.58</td>
<td>49.86</td>
<td>68.17</td>
<td>H-2</td>
</tr>
<tr>
<td>H-3</td>
<td>2</td>
<td>0.40</td>
<td>114.61</td>
<td>76.15</td>
<td>0.46</td>
<td>101.09</td>
<td>45.85</td>
<td>H-3</td>
</tr>
<tr>
<td>H-4</td>
<td>2</td>
<td>0.33</td>
<td>204.54</td>
<td>51.98</td>
<td>0.38</td>
<td>178.12</td>
<td>28.01</td>
<td>H-4</td>
</tr>
</tbody>
</table>